
Journal of Computational Physics 228 (2009) 7805–7820
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
An operator splitting method for the Degasperis–Procesi equation

B.-F. Feng a,*, Y. Liu b,*

a Department of Mathematics, The University of Texas-Pan American, Edinburg 78541, United States
b Department of Mathematics, The University of Texas-Arlington, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Received 1 January 2009
Received in revised form 22 July 2009
Accepted 27 July 2009
Available online 6 August 2009
0021-9991/$ - see front matter Published by Elsevie
doi:10.1016/j.jcp.2009.07.022

* Corresponding author.
E-mail address: feng@utpa.edu (B.-F. Feng).
An operator splitting method is proposed for the Degasperis–Procesi (DP) equation, by
which the DP equation is decomposed into the Burgers equation and the Benjamin–
Bona–Mahony (BBM) equation. Then, a second-order TVD scheme is applied for the Burgers
equation, and a linearized implicit finite difference method is used for the BBM equation.
Furthermore, the Strang splitting approach is used to construct the solution in one time
step. The numerical solutions of the DP equation agree with exact solutions, e.g. the mul-
tipeakon solutions very well. The proposed method also captures the formation and prop-
agation of shockpeakon solutions, and reveals wave breaking phenomena with good
accuracy.

Published by Elsevier Inc.
1. Introduction

In this paper, we present an operator splitting method for the numerical solutions of the Degasperis–Procesi equation [19]
ut þ 3j3ux � uxxt þ 4uux ¼ 3uxuxx þ uuxxx: ð1Þ
Degasperis and Procesi [19] studied a family of third order dispersive nonlinear equations
ut � a2uxxt þ cuxxx þ c0ux ¼ ðc1u2 þ c2u2
x þ c3uuxxÞx; ð2Þ
with six real constants c0; c1; c2; c3; c;a 2 R. They found that there are only three equations were asymptotically integrable,
i.e. the Korteweg-de Vries (KdV) equation ða ¼ c2 ¼ c3 ¼ 0Þ, the Camassa–Holm (CH) equation c1 ¼ � 3c3

2a2 ; c2 ¼ c3
2

� �
, and one

new equation c1 ¼ � 2c3
a2 ; c2 ¼ c3

� �
, which is named the Degasperis–Procesi (DP) equation later on.

The Camassa–Holm equation
ut þ 2j2ux � uxxt þ 3uux ¼ 2uxuxx þ uuxxx; ð3Þ
was first derived by Fokas and Fuchssteiner [24] as a bi-Hamiltonian system and then has attracted considerable attention
since it was derived as a model equation for shallow water waves in 1993 [4]. The Camassa–Holm equation has been shown
to be completely integrable [5]. Explicit form of multipeakon solutions for the Camassa–Holm equation was found by Beals
et al. when k – 0 [2]. An approach based on the inverse scattering transform method (IST) provides an explicit form of the
inverse mapping in terms of Wronskian [15].

The Degasperis–Procesi equation only differs from the Camassa–Holm equation by coefficients. Degasperis et al. proved
the integrability of the DP equation by constructing a Lax pair and a bi-Hamiltonian structure [18]. These two equations
share some common properties. They both can be viewed as the models of shallow water waves [4,5,31,16]. When j – 0,
the Camassa–Holm equation is related to the AKNS shallow water wave equation by a hodograph transformation [41],
r Inc.
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and the Degasperis–Procesi equation is related to the Hirota-Satsuma shallow water wave equation by a similar hodograph
transformation [37]. By use of the above findings, Matsuno obtained the multisoliton solutions of the DP equation when
j – 0 [37,38]. When j ¼ 0, both the CH and the DP equations have multipeakon solutions, the explicit form of multipeakon
solution of the DP equation was found by Lundmark and Szmigielski by solving an inverse scattering problem of a discrete
cubic string [34,35]. Furthermore, the peakon solutions for both the CH equation and the DP equation are orbitally stable
[17,32].

On the other hand, although the DP equation has an apparent similarity to the CH equation, there are major structural
differences between these two equations such as the Lax pair, wave breaking phenomena and the solutions. The isospectral
problem in the Lax pair for the DP equation is the third-order equation [18], while the isospectral problem for the CH equa-
tion is the second order equation [4]. It is worth noting that Lundmark [36] showed that, when j ¼ 0, the DP equation has
not only one peakon solution, uðx; tÞ ¼ ce�jx�ctj but also a shock peakon solution of the form
uðx; tÞ ¼ ce�jx�ctj þ sgnðx� ctÞ s
1þ ts

e�jx�ctj; ð4Þ
where c; sðs > 0Þ are constants. Moreover, it is recently shown by Escher et al. [21] that the DP equation possesses a periodic
shock wave solution given by
uðx; tÞ ¼
cosh 1

2ð Þ
sinh 1

2ð Þ
t þ c

� ��1
sinh x�½x��1

2ð Þ
sinh 1

2ð Þ
; x 2 R n Z; c > 0;

0; x 2 Z:

8><
>:
Lundmark further extended the multipeakon solution of the DP equation to multi-shockpeakon solution [36]
uðx; tÞ ¼
Xn

i¼1

miðtÞe�jx�xiðtÞj þ
Xn

i¼1

siðtÞsgnðx� xiÞe�jx�xiðtÞj; ð5Þ
where miðtÞ; xiðtÞ and siðtÞ stand for the momentum, position and strength of the ith shockpeakon. It is shown that (5) is a
weak solution of the DP equation if and only if miðtÞ; xiðtÞ and siðtÞ; i ¼ 1; . . . ;n satisfy a system of ODEs ((2.4) and (2.5) in
[36]). However, the integrability and the explicit form of above solution are still unclear even for n ¼ 2 case. The only explicit
form available is one shockpeakon solution mentioned above in (4).

Note that these peakons and shockpeakons are not the strong solutions in the Sobolev space Hs; s P 3
2, but the global weak

solutions in H1[20]. Existence of these discontinuous (shock waves, [36]) solutions of the DP equation shows that the DP
equation would behave radically different from the Camassa–Holm equation, but similar to the inviscid Burgers equation,
which implies that a well-posedness theory should depend on some functional spaces which contain discontinuous func-
tions. Indeed, this observation was confirmed by Coclite and Karlsen [11–13]. In [11–13], they proved the global existence
and uniqueness of L1 \ BV entropy weak solutions satisfying an infinite family of Kruz̆kov-type entropy inequalities. and also
proved existence of bounded weak solutions by an Oleĭnik-type estimate for L1 solutions to the DP equation with j ¼ 0.

For the purpose of numerical tests, the explicit form of two-peakon solution uðx; tÞ ¼
P2

i¼1miðtÞe�jx�xiðtÞj is listed here.
x1ðtÞ ¼ log
ðk1 � k2Þ2b1b2

ðk1 þ k2Þðk1b1 þ k2b2Þ
; x2ðtÞ ¼ logðb1 þ b2Þ; ð6Þ

m1ðtÞ ¼
ðk1b1 þ k2b2Þ2

k1k2 k1b2
1 þ k2b2

2 þ
4k1k2
k1þk2

b1b2

� � ; m2ðtÞ ¼
ðb1 þ b2Þ2

k1b2
1 þ k2b2

2 þ
4k1k2
k1þk2

b1b2

; ð7Þ
with bkðtÞ ¼ bkð0Þet=kk . Here k1; k2 are nonzero distinct constants, and b1ð0Þ and b2ð0Þ are two positive constants.
In the last decade, a lot of numerical schemes have been proposed for the Camassa–Holm equation. These include pseudo-

spectral method [29], finite difference schemes [27,10], a finite volume method [1], a finite element method [43], multi-sym-
plectic methods [14], a particle method based on the multipeakon solutions of the Camassa–Holm equation [6–8,28], an
energy-conserving Galerkin scheme [39], and a self-adaptive mesh method based on an integrable semi-discretization of
the Camassa–Holm equation [40,23]. On the contrary, the numerical methods available for the Degasperis–Procesi equation
are only a few. Coclite et al. proposed several operator splitting schemes for the DP equation and proved convergence of
those finite difference schemes to entropy weak solutions [10]. On the other hand, Hoel investigated entropy weak solutions
of the DP equation numerically by a particle method based on the multi-shockpeakon solutions [26]. It is necessary to con-
struct more effective numerical methods for the Degasperis–Procesi equation. The purpose of the present paper is to provide
an operator splitting method for the numerical simulations of discontinuous solutions of the DP equation.

The remainder of the present paper is organized as follows. in Section 2, we present the operator splitting strategy, by
which the Degasperis–Procesi equation is decomposed into the Burgers equation and the Benjamin–Bona–Mahony (BBM)
equation. Then, extensive numerical experiments are performed in Section 3. These include peakon propagation and inter-
actions, peakon–antipeakon interactions, shockpeakon–shockpeakon interactions, as well as initial value problems for some
nonexact initial conditions. A good agreement is obtained in comparing exact and numerical solutions. In addition, the the-
oretical results of wave breaking phenomena are verified and explored numerically. Concluding remarks and comments are
given in Section 4.
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2. Numerical method based on operator splitting

2.1. Strategy of operator splitting method

First, we introduce some notations for the use of numerical scheme of the DP equation. Suppose the computational do-
main ½0; L� is divided into N þ 1 equispaced grid points with spacing Dx ¼ L=N. un

l denotes the approximate solution for the
exact solution uðlDx;nDtÞ.

It is known that the DP equation can be written as a hyperbolic-elliptic system
ut þ fxðuÞ þ Px ¼ 0; P � Pxx ¼ 3j3uþ 3f ðuÞ ; ð8Þ

where f ðuÞ ¼ 1

2 u2. Eq. (8) is the starting point for defining weak solutions and proving well-posedness of the DP equation. It is
also an appropriate form for us to design a numerical scheme.

The numerical schemes in [9] are constructed based on Eq. (8). The operator splitting strategy we used is as follows. Let
Htu0 and Dtu0 denote the solution of the Cauchy problems
ut þ fxðuÞ ¼ 0; uðx; 0Þ ¼ u0ðxÞ ; ð9Þ
ut þ Px ¼ 0; uðx;0Þ ¼ u0ðxÞ ; ð10Þ
respectively.
Note that Eq. (9) is nothing but the Burgers equation, and Eq. (10) is actually equivalent to the Benjamin–Bona–Mahony

(BBM) equation [3]
ut � uxxt þ 3j3uþ 3
2

u2

� �
x
¼ 0; uðx;0Þ ¼ u0ðxÞ : ð11Þ
by use of Eq. (8).
In summary, the DP equation is decomposed into the Burgers equation and the Benjamin–Bona–Mahony (BBM) equation.

To some extent, this decomposition reflects the mechanisms of shock formation in the DP equation. The construction of the
numerical scheme will also be based on this decomposition. By applying a second order TVD scheme for the Burgers equa-
tion, and a linearized second order scheme for the BBM equation, the Strang splitting method [42] is applied and combine the
two schemes to achieve a second order accuracy for the DP equation. The idea is to solve Eqs. (9) and (10) sequentially, and
the numerical solution of the DP equation is constructed as
unþ1
l ¼ H1

2DtDDtH1
2Dtu

n
l : ð12Þ
2.2. Second order TVD scheme for the hyperbolic equation

The formation of shock waves lies in the nature of the Burgers equation, which is a prototype equation to test all kinds of
shock-capturing methods. Over the past 30 years, a great deal of progress has been made in this direction, and varieties of
such methods are available. Examples include higher order Total Variation Diminishing (TVD) schemes first proposed by
Harten [25] and Weighted Essentially Non-Oscillatory schemes (WENO).

It turns out that the TVD property of a scheme can be used as a nonlinear stability condition and together with consis-
tency it guarantees the convergence of the numerical scheme [30].

Accordingly, a second order TVD scheme for the Burgers equation is proposed here. First we define
�ul ¼
f ðulÞ � f ðul�1Þ

ul � ul�1
¼ 1

2
ðul þ ul�1Þ; ð13Þ
and
rl�1=2 ¼
DuI�1=2

Dul�1=2
;

where the index I is used to represent the interface on the upwind side of xl�1=2:
I ¼
l� 1 if �ul > 0
lþ 1 if �ul < 0

�

Furthermore, by letting kl ¼ Dt
Dx

�ul, a second order TVD scheme takes the form
unþ1
l ¼ un

l �
Dt
Dx
ðf ðun

l Þ � f ðun
l�1ÞÞ �

1
2

klð1� klÞð/ðrlþ1=2Þðun
lþ1 � un

l Þ � /ðrl�1=2Þðun
l � un

l�1ÞÞ; ð14Þ
if �ul > 0 (upwind), or
unþ1
l ¼ un

l �
Dt
Dx
ðf ðun

lþ1Þ � f ðun
l ÞÞ �

1
2

klð1þ klÞð/ðrlþ1=2Þðun
lþ1 � un

l Þ � /ðrl�1=2Þðun
l � un

l�1ÞÞ ð15Þ
if �ul < 0 (downwind).
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Here /ðrlþ1=2Þ are called flux-limiter functions, several popular choices which guarantees the TVD property are
minmod : /ðrÞ ¼minmodð1; rÞ;
superbee : /ðrÞ ¼maxð0;minð1;2rÞ;minð2; rÞÞ;
MC : /ðrÞ ¼maxð0;minðð1þ rÞ=2;2;2rÞÞ;
vanLeer : /ðrÞ ¼ rþjrj

1þjrj :

ð16Þ
It is observed that minmod is the most diffusive limiter, it corresponds to the lower boundary of the TVD region, while super-
bee is the least diffusive limiter, it corresponds to the upper boundary of the TVD region. All of these produce second order
scheme when the solution is smooth, and reduces to first order at discontinuities.

2.3. Linearized implicit finite difference method for the elliptic equation

We apply a linearized implicit finite difference method as proposed for the KdV equation by one of the authors [22] to the
BBM equation (10). Through the Crank–Nicolson scheme, the BBM equation is discretized as
1� d2
x

Dx2

 !
unþ1

l � un
l

Dt
þ 3

2
Hx

2Dx
ðj3ðun

l þ unþ1
l Þ þ f n

l þ f nþ1
l Þ ¼ 0; ð17Þ
where
d2
x un

l ¼ un
lþ1 � 2un

l þ un
l�1; Hxun

l ¼ un
lþ1 � un

l�1:
The nonlinear part in (17) can be approximated as
f nþ1
l þ f n

l ¼ 2f n
l þ

@f
@u

� �n

l
Dunþ1

l þ OðDt2Þ ¼ unþ1
l un

l þ OðDt2Þ: ð18Þ
Substituting (18) into (17) yields the following tridiagonal system.
ð�s� 0:75pðj3 þ un
l�1ÞÞunþ1

l�1 þ ð1þ 2sÞunþ1
l þ ð�sþ 0:75ðj3 þ un

lþ1ÞÞunþ1
lþ1 ¼ dn

l : ð19Þ
Here
p ¼ Dt
Dx

; s ¼ 1

ðDxÞ2
;

and
dn
l ¼ ð1þ 2sÞun

l � sðun
lþ1 þ un

l�1Þ � 0:75pj3ðun
lþ1 � un

l�1Þ:
It is noted that we have to compute the coefficient matrix and dn
l , then solve the tridiagonal system at each time step.

Similar to the analysis in [22], it can be easily shown that the order of linearized implicit method is of OððDxÞ2; ðDtÞ2Þ. The
method is unconditionally stable upon linear stability analysis. The proof is omitted here.

Since the proposed TVD scheme for the Burgers equation and the linearized implicit method for the BBM equation are
both of the second order for smooth solutions, and the Strang splitting method also gives a truncation error of OððDtÞ2Þ.
Hence, the operator splitting method for the DP equation is a second order method for smooth solutions. This is confirmed
by numerical examples shown in the following subsequent section.
3. Numerical experiments

This section is to present extensive test problems of the DP equation for application of the splitting method. These include
(1) single soliton propagation including the single smooth soliton when j–0 and the single peakon when j ¼ 0; (2) Binary
peakon–peakon, peakon–antipeakon, shockpeakon–shockpeakon interactions and a triple peakon–antipeakon-shockpeakon
interaction; (3) Initial value problems for several types of nonexact initial conditions. Periodic boundary condition is em-
ployed, which is conventional for the simulation of wave phenomena. All simulations use a fixed ratio Dt ¼ 1

2 Dx max jUn
j j

to assure the CFL condition.

3.1. Single soliton solutions

We first check the accuracy and the order of the splitting scheme by a smooth solution.

Example 3.1. Single smooth soliton: when j – 0 the DP Eq. (1) admits smooth N-soliton solutions in the parametric form
[37], in which a smooth one-soliton solution is of the form
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uðy; tÞ ¼ 2j3ða2
1 � 1Þð4a2

1 � 1
a1ðcosh n1 þ 2a1 � a�1

1 Þ
ð20Þ

xðy; tÞ ¼ y
j
þ ln

a1 þ 1þ ða1 � 1Þen1

a1 � 1þ ða1 þ 1Þen1

� �
: ð21Þ
Here
n1 ¼ k1 y� 3j4

1� j2k2
1

t � y0

 !

a1 ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� j2k2

1

1� j2k2
1

vuut

a1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2a1 � 1Þða1 þ 1Þ
ð2a1 þ 1Þða1 � 1Þ

s
:

The simulations are run in a domain [�20,20] with parameters j ¼ 0:511;jk1 ¼ 0:8; y0 ¼ 0:0 with 2M grid points. Fig. 1
shows the numerical and the exact solution at t ¼ 10:0 for Dx ¼ Dt ¼ 0:3125. The initial date is the dashed line. The L1 errors
are calculated and are shown in Table 1. Here L1 ¼max j~ul � ulj, where ~ul and ul are the numerical and the exact solutions,
respectively. It is obvious that the proposed scheme is of second order for smooth solutions.

Example 3.2. Single peakon solution:
uðx; tÞ ¼ ce�jx�ctj ð22Þ
is a solution for the DP equation when j ¼ 0. The profile u0ðxÞ ¼ uðx;0Þ yields the initial condition. For our numerical sim-
ulations, we choose c ¼ 1 and the computation domain to be [�10,10].

For N ¼ 256, Table 2 compares the errors in the L1-norm and two of the conservative quantities I1 ¼
R

uðxÞdx and
I2 ¼

R
u3ðxÞdx for different flux limiter functions at t ¼ 4:0. Here E1 ¼ ð�I1 � I1Þ=I1 and E2 ¼ ð�I2 � I2Þ=I2 indicate the relative

errors in I1 and I2. �Ii and Iiði ¼ 1;2Þ stand for the numerical and exact values for the conserved quantities. Simpson’s rule was
employed for the numerical quadrature of the integrals.

From Table 2, we can conclude that superbee limiter function gives a relatively better result. We next consider the rate of
convergence of the scheme for the single peakon problem. Table 3 displays the relative errors in I1; I3; L1-norm and an order
estimate at t ¼ 4:0. The superbee limiter function is used.
3.2. Interactions for peakons and shockpeakons

Example 3.3. Peakon–peakon interaction: it is shown in [36] that the DP equation has a two-peakon solution in the form of
(6) and (7) when j ¼ 0. In the test problem, the parameters are chosen to have two peakons of amplitudes A1 ¼ 2:0 and
A2 ¼ 1:0 initially located at x1 ¼ �13:792 and x2 ¼ �4:0, respectively. Then the interaction of these two peakons are solved
numerically on a domain [�20,20]. We use two different grid points N ¼ 512;1024 and set the time step to assure the CFL
−20 −15 −10 −5 0 5 10 15 20
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

u(
t,x

)

Approximation
Initial profile
Exact

Fig. 1. Numerical solution of one smooth soliton solution.



Table 1
Convergence rate for a smooth soliton solution.

Dx L1 Rate of convergence

40/64 9:125� 10�2

40/128 2:778� 10�2 3:32

40/256 6:894� 10�3 4:03

40/512 1:740� 10�3 3:96

Table 2
Comparison of errors for different flux limiter functions.

Flux-limiter L1 E1 E2

minmod 9:48� 10�2 �5:27� 10�4 �5:40� 10�3

vanLeer 7:03� 10�2 �4:84� 10�4 �3:02� 10�3

MC 5:97� 10�2 �4:80� 10�4 �2:43� 10�3

superbee 3:92� 10�2 �4:03� 10�4 �8:68� 10�5

Table 3
Convergence rate for one single peakon solution with c ¼ 1:0.

Dx E1 E2 L1 Order

20/128 �8:78� 10�4 �2:67� 10�3 1:1223� 10�1

20/256 �4:03� 10�4 �8:68� 10�5 6:8893� 10�2 1.6291

20/512 �2:01� 10�4 3:13� 10�4 4:2700� 10�2 1.6134

20/1024 �1:18� 10�4 2:12� 10�4 3:6415� 10�2 1.1726

20/2048 �6:77� 10�5 8:36� 10�5 2:4607� 10�2 1.4798

tu(x,t)Fig. 2.3D plot for the numerical solution of two peakon interaction.781wB.-F. Feng, Y. Liu / Journal of Computational Physics 228 (2009) 7805Ö7820
condition. Only the superbee limiter function is used. Fig. 2 gives a 3D plot for the whole collision process, and Fig. 3 displays
the snapshots at different times, together with the exact solution. Table 4 lists the relative errors in two conserved quantities
E1; E2, and L1-norm at different stages of the interaction. The rate of the convergence is estimated for two different mesh
sizes. Both the graph and the table indicate a good accuracy.

Example 3.4. Peakon–antipeakon interaction: the binary peakon–antipeakon interaction is theoretically studied by Lund-
mark [36]. We confirm his theoretical results for both the symmetric ðm1 þm2 ¼ 0Þ and nonsymmetric ðm1 þm2 – 0Þ
numerically. For the symmetric case, the parameters are chosen so that the peakon ðm1 ¼ 1:0Þ and antipeakon
ðm2 ¼ �1:0Þ are located at x1 ¼ �5:0 and x2 ¼ 5:0 initially. Before the collision, the solution follows two-peakon solution
(6) and (7). A stationary shockpeakon is formed at t � 5:0 with strength s � 1:0, and its evolution follows one shockpeakon
solution (4). The numerical solutions verifies the theoretical prediction by Lundmark with good accuracy. Fig. 4 shows the
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Fig. 3. Snapshots for the interaction of two peakon solutions (a) t ¼ 0:0; (b) t ¼ 8:0; (c) t ¼ 10:0; (d) t ¼ 13:0.

Table 4
Errors for two peakon interaction.

Time Dx E1 E2 L1 Order

t = 2.0 40/512 �5:06� 10�4 3:25� 10�3 9:5444� 10�2

40/1024 �6:29� 10�4 2:95� 10�3 3:9710� 10�2 2.4035

t = 4.0 40/512 �2:46� 10�4 6:27� 10�3 8:1185� 10�2

40/1024 �6:39� 10�4 6:28� 10�3 4:8175� 10�2 1.6852

t = 6.0 40/512 �4:30� 10�4 4:77� 10�3 6:1916� 10�2

40/1024 �6:61� 10�4 9:28� 10�3 4:2976� 10�2 1.4407

t = 8.0 40/512 �3:49� 10�4 5:76� 10�3 5:0201� 10�2

40/1024 �6:65� 10�4 1:18� 10�2 2:9882� 10�2 1.6802

t = 10.0 40/512 �3:22� 10�4 6:48� 10�3 6:2800� 10�2

40/1024 �6:63� 10�4 1:45� 10�2 4:8910� 10�2 1.2840
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collision process before and after the collision. As mentioned in [36], I3 is not a conserved quantity anymore. So in Table 5 we
list the errors in I1 and L1 at different times. It is worth noting that a convergence rate of about 1.0 is achieved once the
shockpeakon is formed. This fact shows that the proposed method is especially effective for the simulations of discontinuous
solutions.

For the nonsymmetric peakon–antipeakon interaction, the parameters are chosen as follows:
k1 ¼ 0:5; k2 ¼ �1:0; b1ð0Þ ¼ 0:0015, b2ð0Þ ¼ 148:4177. Thus, initially, a peakon of amplitude 2.0 and an antipeakon of ampli-
tude 1.0 are located at x1 ¼ �5:0 and x2 ¼ 5:0, respectively. Based on the results by Lundmark [36], two-peakon solution
holds until t < tc ¼ 3:3626. At t ¼ tc , a moving shockpeakon is formed at x ¼ 1:8526. One can calculate the momentum

and the shock strength: ~m ¼ k�1
1 þ k�1

2 ¼ 1:0, ~s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k�1

1 k�1
2

q
¼ 1:4142. The shockpeakon moves with a velocity of ~m ¼ 1:0.
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Fig. 4. Peakon–antipeakon interaction in the symmetric case: (a) before the collision; (b) after the collision.
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The above theoretical predictions are confirmed by our scheme with good accuracy. Fig. 5 shows the snapshots of the numer-
ical solutions before and after the collision. Table 6 displays the errors in L1 and E1 for a fixed grid points N ¼ 1024 in a com-
putation domain [�15,15].

Example 3.5. Shockpeakon–shockpeakon interaction: as mentioned in [36], the shockpeakon dynamics still remains an open
problem. Even for the case of n ¼ 2, it is unclear whether the ODE system is integrable or not. There are difficulties in
simulating the ODE system because the system behaves badly. However, the shockpeakon collisions can be studied through
simulating the DP equation directly. To this end, we show an example whose initial condition is set to be
uðx; 0Þ ¼
X2

i¼1

mið0Þe�jx�xi0 j þ
X2

i¼1

sið0Þsgnðx� xi0Þe�jx�xi0 j; ð23Þ
with m1ð0Þ ¼ 2:0; s1ð0Þ ¼ 1:0;m2ð0Þ ¼ 1:0; s2ð0Þ ¼ �0:5; x1ð0Þ ¼ �5:0 and x2ð0Þ ¼ 5:0. The numerical solutions is shown in
Fig. 6 at different times, which clearly show that two shockpeakons merge into one shockpeakon at t � 3:5, then the result-
ing shockpeakon gains a momentum of m ¼ m1 þm2 ¼ 1:0 and moves to the right with velocity 1.0, following the solution
(4).

Example 3.6. A triple collision: a triple collision among two symmetric peakon–antipeakons and one stationary shock peakon
were studied theoretically by Lundmark in [36] and numerically by Coclite et al. in [9]. The initial condition for this case is
uðx; 0Þ ¼ e�jxþ5j þ sgnðxÞe�jxj � e�jx�5j: ð24Þ
The exact solution will be a triple collision among a peakon, an antipeakon and a shockpeakon at t ¼ tc � 5:32 and x ¼ 0. For
t > tc the solution will merge into one single shock peakon.



Table 5
Errors for peakon–antipeakon interaction in the symmetric case.

Time Dx I1 L1 Order

t = 2.0 30/256 �1:51� 10�5 9:9171� 10�2

30/512 �1:63� 10�4 5:4572� 10�2 1.8173

30/1024 3:59� 10�5 3:6461� 10�2 1.4967

t = 4.0 30/256 �4:37� 10�5 1:2477� 10�1

30/512 �4:64� 10�4 5:4145� 10�2 2.3043

30/1024 �2:89� 10�6 3:9268� 10�2 1.3788

t = 6.0 30/256 �7:07� 10�3 3:5888� 10�2

30/512 �2:96� 10�3 1:6728� 10�2 2.1453

30/1024 �1:34� 10�3 6:4997� 10�3 2.5737

t = 8.0 30/256 8:86� 10�4 1:7470� 10�2

30/512 3:68� 10�4 7:0551� 10�3 2.4763

30/1024 1:68� 10�4 3:2623� 10�3 2.1626

t = 10.0 30/256 2:64� 10�4 1:1558� 10�2

30/512 1:10� 10�4 5:1806� 10�3 2.2310

30/1024 5:02� 10�5 2:5615� 10�3 2.0225
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Table 6
Errors for peakon–antipeakon interaction in the nonsymmetric case.

t ¼ 2 t ¼ 3 t ¼ 4 t ¼ 5 t ¼ 6

E1 �5:85� 10�5 5:87� 10�5 7:53� 10�4 4:35� 10�5 3:25� 10�4

L1 3:66� 10�2 4:95� 10�2 4:84� 10�2 3:81� 10�2 2:89� 10�2
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Fig. 6. The snapshots for the interaction between two shockpeakon solutions: (a) before the collision; (b) after the collision.
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The simulations are carried out in a domain [�10,10] with 2M equispaced grid points up to t ¼ 8:0. In Fig. 7, we show a 3D
plot of the numerical solution by using 28 grid points. Since an (almost) exact solution is available [36], we computed the
relative L1 error, defined by
L1 ¼ max

P
jjun

j � ~un
j jP

jjun
j j

; ð25Þ
where un
j and ~un

j denote the exact solution and the numerical solution at jDx; nDt, respectively. The results are reported in
Table 7.
3.3. General initial value problems

We compute the time evolutions of the DP equation starting from several non-exact initial conditions. The value of j is
assumed to be zero except the last example.
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Table 7RelativeL

1errors for the triple collision.M4 5 6 7 8 9 10 11L

1
8 8818 3678 1418 0558 0228 0168 0128 005

−40−30−20−10010203040−0.20 . 20 . 40 . 60 . 811 . 21 . 41 . 61 . 8
3.3.1. Wave breaking
Liu and Yin [33] showed that wave-breaking can occur in the DP equation. Briefly speaking, assume u0 2 HsðRÞ; s > 3

2, and
there exists x0 2 R such that the momentum density m0ðxÞ ¼ u0ðxÞ � u0;xxðxÞ changes the sign from positive to negative at
x ¼ x0, then the corresponding solution breaks in finite time T < þ1, i.e. the wave profile remains bounded but its slope be-
comes infinity in finite time T. The shock waves usually appear afterwards.

Example 3.7. We verify the above theoretical results by an example, whose initial condition is given by
the num
u0ðxÞ ¼ sech2 dðx� x0Þð Þ; ð26Þ
where d is a parameter to control the width of the initial profile. Figs. 8 and 9 show the results for d ¼ 0:3; d ¼ 2:0, respec-
tively. When d ¼ 0:3, several peakons are developed from the initial condition. However, for d ¼ 2:0, a shockpeakon and an
antipeakon are developed.
erical solution of a triple collision.

0
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The results of wave breaking phenomena for the DP equation [33] give an explanation of the above intriguing fact. One
can easily calculate
u0ðxÞ � u0;xxðxÞ ¼ sech2½dðx� x0�ðð1� 4d2Þ þ 6d2sech2½dðx� x0�Þ; ð27Þ
which remains positive if d < 1=2, and changes the sign if d > 1=2 for certain values of x. Accordingly, wave breaking does
not occur when d ¼ 0:3, but it occurs, and a shockpeakon is developed for d ¼ 2:0.

Example 3.8. An example whose initial condition given by
u0ðxÞ ¼ e0:5x2
sinðpxÞ; x 2 ½�2;2� ð28Þ
is computed. Fig. 10(a) and (b) shows the computed solution up to t ¼ 1:3, which agrees with the numerical results in [9]. It
is checked here that m0ðxÞ ¼ u0ðxÞ � u0;xxðxÞ changes the sign from positive from negative at x � �1:22. Therefore, we remark
that the breaking of the initial continuous wave, leading to the formation of two shock waves, can be theoretically explained
by the result in [33].
3.3.2. Other general initial value problems
To compare with existing numerical methods of the DP equation, we further compute several examples.

Example 3.9. We consider a discontinuous initial condition
u0ðxÞ ¼ 2exvð�1;0ÞðxÞ þ 2vð0;1ÞðxÞ: ð29Þ
The evolution is numerically solved in a domain [�5,15] with 2M equispaced grid points. Fig. 11 shows the numerical solu-
tions at t ¼ 2:0; 5:0, together with the initial profile. The L1 errors and the rate of convergence are illustrated in Table 8. Since
the exact solution is unknown, the numerical solution with 210 grid points is used as a reference solution.

Example 3.10. An algebraically-decayed initial condition given by
u0ðxÞ ¼
2

1þ x2 ð30Þ
is computed on a domain [�30,30] with N ¼ 2M grid points. Similar to Example 3.9, the L1 errors are calculated by using the
numerical solution of N ¼ 1024 as the reference solution. The results are showed in Table 9. Fig. 12 shows the numerical
solution at t ¼ 2:0;5:0.

Example 3.11. In the last example, we show the evolution of the initial condition (26) is very different for j – 0. The param-
eters in the initial condition are d ¼ 0:1; x0 ¼ �50, and the computation domain is [�100,100]. The value of j is chosen as
0.01, which implies a very small dispersion term, corresponding to the dispersiveness DP equation. The initial profile and the
approximate solution at t ¼ 60 are shown in Fig. 13. This result is similar to the result of the dispersiveness CH equation [23],
i.e. a peakon train is generated.
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Table 8
Errors for numerical solution of (29).

Time Dx L1 Rate of convergence

t = 2.0 20/64 3:88� 10�1

20/128 1:14� 10�1 3.4035

20/256 4:05� 10�2 2.8148

t = 5.0 20/64 7:67� 10�1

20/128 1:44� 10�1 5.3264

20/256 4:86� 10�2 2.9629

Table 9
Errors for numerical solution of (30).

Time Dx L1 Rate of convergence

t = 2.0 20/64 4:06� 10�1

20/128 2:12� 10�1 1.9151

20/256 1:60� 10�1 1.3250

t = 5.0 20/64 1:11� 100

20/128 6:33� 10�1 1.7536

20/256 3:28� 10�1 1.9299
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Fig. 13. The numerical solution from initial condition (26) with d ¼ 0:1 and j ¼ 0:01.
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4. Concluding remarks and comments

We proposed an operator splitting method for the DP equation, by which the DP equation is decomposed into the Burgers
equation and the BBM equation. We apply a second order TVD scheme to the Burgers equation, and a linearized implicit fi-
nite difference method of the second order for the BBM equation. Then, the Strang splitting method is used to construct the
solution in one time step. Therefore, the proposed operator splitting method is a second order method for the smooth solu-
tion. The method also deals with the discontinuous solutions such as peakon and shockpeakon and the wave breaking phe-
nomena with good accuracy.

We carried out extensive numerical computations with various initial conditions, and summarized the results as follows:

1. The method is of second order and is confirmed by a single smooth soliton solution.
2. The numerical solutions of one peakon propagation and two-peakon interaction are in good agreement with exact

solutions.
3. The operator splitting method captures the formation and propagation of shockpeakon with good accuracy.
4. The operator splitting method catches the wave breaking phenomena well, and verified the theoretical prediction.

In conclusion, the proposed splitting method is an effective method to deal with both smooth and discontinuous solutions
of the DP equation. It is expected to be used as a tool to study the rich wave phenomena of the DP equation, along with some
theoretical methods.

Acknowledgements

The authors are very grateful to Professor P. Lax for his encouragements and comments on the present work. The authors
are grateful for the comments by anonymous reviewers which lead to the improvement of the present paper. The work of
Feng was supported partly by the US Army Research Office under Contract No. W911NF-05-1-0029. The work of Liu was par-
tially supported by the NSF Grant DMS-0906099.

References

[1] R. Artebrant, H.J. Schroll, Numerical simulation of Camassa–Holm peakons by adaptive upwinding, Appl. Numer. Math. 56 (2006) 695.
[2] R. Beals, D.H. Sattinger, J. Szmigielski, Multipeakons and the classical moment problem, Adv. Math. 154 (2000) 229.
[3] T.B. Benjamin, J.L. Bona, J. Mahony, Model equations for long waves in nonlinear dispersive systems, Phil. R. Soc. London, Ser. A 272 (1972) 47.
[4] R. Camassa, D.D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993) 1661.
[5] R. Camassa, D.D. Holm, J. Hyman, A new integrable shallow water equation, Adv. Appl. Mech. 31 (1993) 1.
[6] R. Camassa, Characteristics and the initial value problem of a completely integrable shallow water equation, DCDS-B 3 (2003) 115.
[7] R. Camassa, J. Huang, L. Lee, On a completely integrable numerical scheme for a nonlinear shallow-water wave equation, J. Nonlinear Math. Phys. 12

(2005) 146.
[8] R. Camassa, J. Huang, L. Lee, Integral and integrable algorithms for a nonlinear shallow-water wave equation, J. Comp. Phys. 216 (2006) 547.
[9] G.M. Coclite, K.H. Karlsen, N.H. Risebro, Numerical schemes for computing discontinuous solutions of the Degasperis–Procesi equation, IMA J. Numer.

Anal. 28 (2008) 80.
[10] G.M. Coclite, K.H. Karlsen, N.H. Risebro, A convergent finite difference scheme for the Camassa–Holm equation with general H1 initial data, SIAM J.

Numer. Anal. 46 (2008) 1554.
[11] G.M. Coclite, K.H. Karlsen, On the well-posedness of the Degasperis–Procesi equation, J. Funct. Anal. 233 (2006) 60.
[12] G.M. Coclite, K.H. Karlsen, On the uniqueness of discontinuous solutions to the Degasperis–Procesi equation, J. Differential Eq. 234 (2007) 142.
[13] G.M. Coclite, K.H. Karlsen, Bounded solutions for the Degasperis–Procesi equation, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 1 (2008) 439.
[14] D. Cohen, B. Owren, X. Raynaud, Multi-symplectic integration of the Camassa–Holm equation, J. Comp. Phys. 227 (2008) 5492.
[15] A. Constantin, On the scattering problem for the Camassa–Holm equation, R. Soc. Lond. Proc. Ser. A. Math. Phys. 457 (2001) 659.
[16] A. Constantin, D. Lannes, The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations, Arch. Rantional Mech. Anal. 192

(2009) 165.
[17] A. Constantin, W.A. Strauss, Stability of peakons, Comm. Pure Appl. Math. 53 (2000) 603.
[18] A. Degasperis, D.D. Holm, A.N.W. Hone, A new integral equation with peakon solutions, Theor. Math. Phys. 133 (2002) 1463.
[19] A. Degasperis, M. Procesi, Asymptotic integrability, in: A. Degasperis, G. Gaeta (Eds.), Symmetry and Perturbation Theory, World Scientific Publishing,

1999, pp. 23–37.
[20] J. Escher, Y. Liu, Z. Yin, Global weak solutions and blow-up structure for the Degasperis–Procesi equation, J. Funct. Anal. 241 (2006) 457.
[21] J. Escher, Y. Liu, Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis–Procesi equation, Indiana Univ. Math. J. 56 (2007) 87.
[22] B.F. Feng, T. Mitsui, A finite difference method for the Korteweg-de Vries and the Kadomtsev-Petviashvili equations, J. Comp. Appl. Math. 90 (1998) 95.
[23] B.F. Feng, K. Maruno, Y. Ohta, A self-adaptive mesh method for the Camassa–Holm equation, preprint.
[24] A. Fokas, B. Fuchssteiner, Symplectic structures their Bäcklund transformation and hereditary symmetries, Physica D 4 (1981) 47.
[25] A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys. 49 (1983) 357–393.
[26] H.A. Hoel, A numerical scheme using multi-shock peakons to compute solutions of the Degasperis–Procesi equation, Elect. J. Diff. Eq. 2007 (2007) 1.
[27] H. Holden, X. Raynaud, Convergence of a finite difference scheme for the Camassa–Holm equation, SIAM J. Num. Anal. 44 (2006) 1655.
[28] H. Holden, X. Raynaud, A convergent numerical scheme for the Camassa–Holm equation based on multipeakons, Discrete Contin. Dyn. Syst. 14 (2006)

50.
[29] H. Kalisch, J. Lenells, Numerical study of traveling-wave solutions for the Camassa–Holm equation, Chaos, Solitons & Fractals 25 (2005) 287.
[30] R.J. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, New York, 2002.
[31] R.S. Johnson, Camassa–Holm, Korteweg-de Vries and related models for water, J. Fluid Mech. 455 (2002) 63.
[32] Z. Lin, Y. Liu, Stabiltiy of peakons for the Degasperis–Procesi equation, Comm. Pure Appl. Math. LXII (2008) 1.
[33] Y. Liu, Z. Yin, Global existence and blow-up phenomena for the Degasperis–Procesi equation, Comm. Math. Phys. 267 (2006) 801.
[34] H. Lundmark, J. Szmigielski, Multi-peakon solutions of the Degasperis–Procesi equation, Inv. Prob. 19 (2003) 1241.
[35] H. Lundmark, J. Szmigielski, Degasperis–Procesi peakons and the discrete cubic string, Int. Math. Res. Pap. 2005 (2003) 53.



7820 B.-F. Feng, Y. Liu / Journal of Computational Physics 228 (2009) 7805–7820
[36] H. Lundmark, Formation and dynamics of shock waves in the Degasperis–Procesi equation, J. Nonlinear Sci. 17 (2007) 169.
[37] Y. Matsuno, Multisoliton solutions of the Degasperis–Procesi equation and their peakon limit, Inv. Prob. 21 (2005) 1553.
[38] Y. Matsuno, Multisoliton solutions of the Degasperis–Procesi equation, Inv. Prob. 21 (2005) 2085.
[39] T. Matsuo, H. Yamaguchi, An energy-conserving Galerkin scheme for a class of nonlinear dispersive equations, J. Comput. Phys. 228 (2009) 4346.
[40] Y. Ohta, K. Maruno, B.F. Feng, An integrable semi-discretization of the Camassa–Holm equation and its determinant solution, J. Phys. A: Math. Theor. 41

(2008) 355205.
[41] A. Parker, On the Camassa–Holm equation and a direct method of solution I. Bilinear form and solitary waves, R. Soc. Lond. Proc. Ser. A 460 (2004)

2929.
[42] G. Strang, on the construction and comparison of difference schemes, SIAM J. Numer. Anal. 5 (1968) 506.
[43] Y. Xu, C.-W. Shu, A local discontinuous Galerkin method for the Camassa–Holm equation, SIAM J. Numer. Anal. 46 (2008) 1998.


	An operator splitting method for the Degasperis–Procesi equation
	Introduction
	Numerical method based on operator splitting
	Strategy of operator splitting method
	Second order TVD scheme for the hyperbolic equation
	Linearized implicit finite difference method for the elliptic equation

	Numerical experiments
	Single soliton solutions
	Interactions for peakons and shockpeakons
	General initial value problems
	Wave breaking
	Other general initial value problems


	Concluding remarks and comments
	Acknowledgements
	References


